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1 Finding Local Extrema: Second Derivative Test
Given a function f (x , y) of two variables, to identify local maxima and minima, one uses the following procedure:

Identify all the critical points of f . �en at each critical point, apply the second derivative test to
determine whether it’s a local maximum, minimum, or saddle point.

In more detail, the method goes as follows.

1. To identify critical points, solve the equation ∇ f = 0. Note that this is a vector equation, so it is actually a
system of two scalar equations:

∂ f
∂x

= 0,
∂ f
∂y

= 0.

2. To apply the second derivative test, for every solution (x , y) = (a, b) found, compute the Hessian determi-
nant

D = det [ fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

] = fxx(a, b) fyy(a, b) − ( fxy(a, b))2.

(Note that in the equality above we are assuming the function is “nice enough” for Clairaut’s theorem to be
applicable—which will be the case in problems we consider.)

(a) If D > 0 then we have a local extremum. Note that we necessarily also have fxx(a, b) fyy(a, b) > 0,
which means that fxx(a, b) and fyy(a, b) have the same sign—they are either both positive or both
negative.

i. If they are both positive, then f has a local minimum at (a, b).
ii. If they are both negative, then f has a local maximum at (a, b).
A way to remember this is to think of the analogous situation in single-variable calculus: at a critical
point of a function f (x), if f ′′ > 0 (concave up) we have a minimum, and if f ′′ < 0 (concave down) we
have a maximum.

(b) If D < 0 then f has a saddle point at (a, b). No further analysis as above is needed. A saddle point is,
by de�nition, any critical point that is not a local minimum or maximum.

(c) If D = 0 then unfortunately the second derivative test is inconclusive, and ad-hoc analysis of the critical
point is needed.

Where to look in Stewart: §14.7
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2 Finding Global Extrema: Lagrange Multipliers
Suppose we have a function f , either of two or three variables, that we are trying tomaximize orminimize, possibly
subject to some constraints. In other words, we are trying to �nd the global extrema of a function f (x , y) on some
region D of R2, or of a function f (x , y, z) on some region D of R3.
�emethod of Lagrangemultipliers assumes that the global maximum orminimumwe are trying to �nd actually

exists. If it does exist, then the method will �nd it.

Remark. A su�cient condition for existence of global extrema is that the region D be closed and bounded. �e
latter condition just means that D doesn’t extend o� to in�nity. �e former is a bit more subtle, but any region
de�ned by =, ≤, and/or ≥ will typically satisfy it (< and >may be problematic, however).
�e concept behind the Lagrange multiplier algorithm is the following:

If we know that the global maximum or minimum that we are a�er actually exists, then in order to
�nd it, we can make a list of all possible candidate points in D and then compare the value of f at all
those points.
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In more detail:

1. To �nd the candidates for extrema, we need to break up our region D into pieces of “homogeneous” dimen-
sion, as a di�erent analysis will be needed for each part. A picture of some examples has been provided.
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In each case, there is a common algebraic theme. Each component is de�ned by some combination of equa-
tions and (strict) inequalities. First we look at the equations: we will have

(dimension of component) + (number of equations) = (number of variables)

where the right hand side is 2 if we are in R2, and 3 if we are in R3.

Algebraically, Lagrange multipliers introduces su�ciently many new equations and new unknowns so that
we end up with an equal number of equations and unknowns:

(number of original equations) + (number of Lagrange multiplier equations)
= (number of original variables) + (number of Lagrange multipliers) (2.1)

�en we have a hope of solving the system. Finally, a�er we get the solutions to the equations, we make sure
that those solutions satisfy the relevant inequalities.

Now let’s look in detail at how this works for each case.

(a) A 2D component inR2 or a 3D component inR3. Sometimes the region D will have an interior. If our
problem is in R2, this is if the decomposition has a two-dimensional piece. Likewise, if our problem is
in R3, this is if the decomposition has a three-dimensional piece. In the examples sketched above, the
triangle has an interior, while the hollow cylinder does not.
�e key feature of the interior component (if there is one) is that points in this region are locally uncon-
strained; they have the full 2 or 3 degrees of freedom for movement. And since di�erential calculus is
wholly local, this basically means we get to ignore the constraints entirely.

For this reason, the candidates for extrema in the interior are exactly the critical points. So to
�nd them, solve ∇ f = 0.

If we are inR2, then the situation in regards to (2.1) is 2+0 = 2+0. If we are inR3, then it is 3+0 = 3+0.
�ere are no Lagrange multipliers to be used in this analysis.
Remember to plug in your solutions into any de�ning inequalities for the interior to make sure that
those points are actually in the region of interest!

(b) A 1D component inR2. �e geometric idea: at a candidate extrema point, the gradient∇ f (x , y) ought
to be perpendicular to the component (a curve in this case) being analyzed. If the curve is de�ned by
the equation g(x , y) = 0, then∇g(x , y) is already perpendicular to this curve, so our desired condition
is that ∇ f (x , y) and ∇g(x , y) are parallel.

If the component is de�ned by the equation g(x , y) = 0 (plus perhaps some inequalities) then
candidates for extrema of f on this component are found by solving the system of equations

g(x , y) = 0,
∂ f
∂x

= λ ∂g
∂x

,

∂ f
∂y

= λ∂g
∂y

, (last two equations can be rewritten as ∇ f = λ∇g)

In regards to (2.1), we have 1+ 2 = 2+ 1: we get 2 auxiliary equations and a single Lagrange multiplier λ.
Remember to plug in your solutions into any de�ning inequalities for this component tomake sure that
those points are actually in the region of interest!
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(c) A 2D component in R3. �is is completely analogous to the preceding case. Again, we want to �nd
when the gradient∇ f (x , y, z) is perpendicular to the component (a surface in this case). If g(x , y, z) =
0 de�nes the surface, then ∇g(x , y, z) is a normal vector for the surface, and so our desired condition
is that ∇ f = λ∇g for some λ.

If the component is de�ned by the equation g(x , y, z) = 0 (plus perhaps some inequalities) then
candidates for extrema of f on this component are found by solving the system of equations

g(x , y, z) = 0,
∂ f
∂x

= λ ∂g
∂x

,

∂ f
∂y

= λ∂g
∂y

,

∂ f
∂z

= λ∂g
∂z

, (last three equations can be rewritten as ∇ f = λ∇g)

In regards to (2.1), we have 1+ 3 = 3+ 1: we get 3 auxiliary equations and a single Lagrange multiplier λ.
Remember to plug in your solutions into any de�ning inequalities for this component tomake sure that
those points are actually in the region of interest!

(d) A 1D component in R3. �is case is a bit more involved because, in order to de�ne a curve in R3, one
typically needs two equations. �e geometric content is once again the same: we want to �nd when
∇ f (x , y, z) is perpendicular to the curve. But now the collection of vectors perpendicular to the curve
at a given point forms a “normal plane” rather than a normal line.
If the curve is de�ned by two equations g(x , y, z) = 0 and h(x , y, z) = 0, then ∇g and ∇h are already
perpendicular to the curve, so they live in this “normal plane.” By a bit of linear algebra, if we know that
∇g and ∇h are not parallel, then the condition for ∇ f to be in this plane also is that ∇ f = λ∇g + µ∇h
for some scalars λ and µ.

If the component is de�ned by the two equations g(x , y, z) = 0 and h(x , y, z) = 0 (plus perhaps
some inequalities) then candidates for the extrema of f on this component are found by solving
the system of equations

g(x , y, z) = 0,
h(x , y, z) = 0,

∂ f
∂x

= λ ∂g
∂x

+ µ ∂h
∂x

,

∂ f
∂y

= λ∂g
∂y

+ µ ∂h
∂y

,

∂ f
∂z

= λ∂g
∂z

+ µ ∂h
∂z

, (last three equations can be rewritten as ∇ f = λ∇g + µ∇h)

In regards to (2.1), we have 2 + 3 = 3 + 2: we get 3 auxiliary equations and two Lagrange multipliers λ
and µ. �at’s 5 equations in 5 unknowns, which is kind of terrifying! �ere is an alternative approach
outlined below.
Remember to plug in your solutions into any de�ning inequalities for this component tomake sure that
those points are actually in the region of interest!

(d’) A 1D component in R3, alternative approach. �e geometric conclusion was that ∇ f should live in
the same plane as∇g and∇h. But we can translate this to an algebraic condition in a di�erent fashion,
using the fact that three vectors are coplanar precisely when their scalar triple product is zero.

4



Math 53 Midterm 2: Review of Di�cult Topics Extrema

If the component is de�ned by the two equations g(x , y, z) = 0 and h(x , y, z) = 0 (plus perhaps
some inequalities) then an alternative way for identifying candidates for the extrema of f on this
component are found by solving the system of equations

g(x , y, z) = 0,
h(x , y, z) = 0,

∇ f ⋅ (∇g ×∇h) = 0.

Note that the third equation is a scalar equation too, so this is truly 3 equations in 3 unknowns.

So rather than having to deal with 2 + 3 = 3 + 2, you can just deal with 2 + 1 = 3 + 0 (i.e. getting one
auxiliary equation, and not introducing any actual Lagrange multipliers). But beware: the drawback is
that the third equation above may be very complicated!

(e) “Zero dimensional” components—points. If your decomposition has points, each of those points is a
candidate too. See the triangle example.

2. Compare the value of f at each candidate. �is part is easy; the absolute maximum of f is whatever largest
value is attained among the candidates, and analogously for the absolute minimum.

Some potentially helpful remarks:

• For all of these di�erent cases, it is worth remembering that at the end of the day we really don’t care about
the values of λ and µ. So if you see an opportunity to eliminate them and reduce to a system of equations
just about your original variables, you should do so.

• If you know that both a minimum and maximum exist, then that certainly means you should �nd at least
two candidates for extrema! If you only �nd one, check your work. (It is possible in some cases where e.g.
you only have a minimum and not a maximum to �nd only one candidate via Lagrange multipliers. But if
the constraint region is closed and bounded, you’re guaranteed the existence of both types of extrema, and
so you had better �nd at least two candidates.)

Where to look in Stewart: §14.8
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In the preceding discussion about di�erential calculus and its applications to optimization, the distinction be-
tween strict and non-strict inequalities is a hugely important one, because the analysis is very sensitive to such
changes. For instance, a function is guaranteed to have extrema on the closed disk x2 + y2 ≤ 1, but not necessarily
on the open disk x2 + y2 < 1.
On the other hand, the distinction between ≤ and < is completely irrelevant for integral calculus, so don’t worry

about whether you should be using strict or non-strict inequalities for the rest of this write-up.

3 Writing Multiple Integrals
�is section covers how to set up the bounds of integration for a problemwhich asks you to integrate some function
f (x , y, z) over a prescribed region E in R3. For a double integral over a region D in R2, the process is similar: just
start at step 3 in the procedure below.
To �gure out the bounds of integration, it is usually easiest to work from the “inside out.” A detailed example

is given in the §4; it may be a good idea to see how it �ts with the procedure described below.

1. Suppose we decided to integrate with respect to z �rst. To �nd the z bounds, we ask: for �xed values of x
and y, what is the allowed range of z? We can answer this problem either geometrically or algebraically.

• To answer it geometrically, if we �x values for x and y, then the points (x , y, z) form a line in the
z direction. Traverse this line upwards (i.e. in the positive z direction) and look at where you enter
and exit the region E; the z coordinates of those points will give you the lower and upper z bounds
respectively.

• To answer it algebraically, look at the inequalities de�ning the region E and see which ones involve z.
Isolate z in each, and then take

max(all expressions less than z) < z <min(all expressions greater than z).

Here the “expressions” should involve x and y only. Note that if there are multiple expressions on either
side then you may need to split your integral into multiple parts (although typically you should pick an
integration order that avoids this).

2. Next, we identify the relevant region D in the xy-plane. Again we can do this either geometrically or
algebraically.

• Geometrically, forwhat points (x , y) in the xy-plane did the line you drew in the preceding step actually
intersect the region E? �is collection of points forms the region D. Alternatively: imagine “projecting”
E onto the xy-plane—what you see is the region D.

• To do this algebraically, from the preceding part you found an inequality (lower z bound) < z <
(upper z bound). Forget about the z in the middle and just take the inequality (lower z bound) <
(upper z bound), which is only about x and y. Take this inequality together with the original inequali-
ties de�ning E that only involved x and y.

3. Suppose we decided to integrate with respect to y next. To �nd the y bounds (if setting up a double
integral dy dx, start here), repeat step 1 but now in 2D rather than 3D. Our innermost variable (z in this
example) is now out of the picture entirely, and now we are looking at the integration order dy dx. So we ask:
for a �xed value of x, what is the allowed range of y? Answering this is completely analogous to step 1:

• To answer it geometrically, if we �x a value for x, then the points (x , y) form a line in the xy-plane in
the y direction. Traverse this line upwards (i.e. in the positive y direction) and look at where you enter
and exit the region D; the y coordinates of those points will give you the lower and upper y bounds
respectively.

6



Math 53 Midterm 2: Review of Di�cult Topics Integration

• To answer it algebraically, look at the inequalities de�ning the region D and see which ones involve y.
Isolate y in each, and then take

max(all expressions less than y) < y <min(all expressions greater than y).

Here the “expressions” should involve only x. Note that if there are multiple expressions on either side
then you may need to split your integral into multiple parts (although typically you should pick an
integration order that avoids this).

4. To identify the relevant interval(s) in the x-axis, thus �nding the x bounds, repeat step 2 but now a di-
mension lower:

• Geometrically, for which values of x does the line you drew in the preceding step actually intersect the
region D? �e collection of all such x gives you the desired interval(s).

• Algebraically, look at (lower y bound) < (upper y bound) together with the inequalities describing D
that depend only on x. �is gives you a system of inequalities solely about x; together they de�ne the
relevant interval(s) in the x-axis.

Important things to remember:

• �e bounds for a given variable can depend on variables further out, but NEVER on variables deeper inside
the integral. So if your integration order is dz dy dx for example, the y bounds may depend on x but not on
z.

• In particular, the outer-most bounds cannot depend on any variables! �ey should be constants.

Where to look in Stewart: §15.2 for double integrals, §15.6 for triple integrals. See in particular Exercises 15.6.9-
18, and also 15.6.29-32.

4 Rewriting Multiple Integrals: Changing Order
�roughout this whole section we will look at a speci�c example:

∫
1

−1 ∫
4

0
∫

2
√
1−z2

−2
√
1−z2

f (x , y, z)dx dy dz.

Suppose we were asked to switch the integration order to dz dy dx instead. We can easily read o� an algebraic
description of the region E over which we are trying to integrate:

−1 < z < 1,
0 < y < 4,

−2
√
1 − z2 < x < 2

√
1 − z2.

Now there are basically two ways to proceed.

4.1 Using an intermediate geometric step
Wecan convert the original algebraic bounds to a picture, and then to convert the picture into new algebraic bounds:

old integration bounds // geometric picture // new integration bounds
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Although the particular example we’re looking at is a triple integral, the same method works for a double integral
(indeed, it is only simpler!).
To build up a picture of the region E from the bounds, it’s perhaps easier to work from the “outside in.” �e

outermost bound says that the relevant interval on the z-axis to consider is from −1 to 1. �en the y bounds say that,
for every z value from that interval, the y bounds are from 0 to 4, giving us a rectangle in the yz-plane. Finally,
we look at the innermost bounds, which say that for every point (y, z) in that rectangle, the x bounds go from
−2

√
1 − z2 to 2

√
1 − z2. �is process is illustrated in the top half of the picture. 
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Now we employ the “geometric” half of the procedure in §3 to break this picture down into our new desired

bounds, which is illustrated in the bottom half of the picture, from right to le�. As outlined in §3 we do this from
the “inside out.”

1. If we �x x , y, then from the picture we see that the z bounds depend only on x. �e cross-sections parallel
to the xz-plane are given by x2 + 4z2 < 4, which is a �lled-in ellipse. So for a �xed value of x (and y), the z
bounds are from − 1

2

√
4 − x2 to 1

2

√
4 − x2.

2. Lines parallel to the z-axis only intersect E when they stems from the rectangle depicted in the xy-plane
with vertices (−2, 0), (−2, 4), (2, 4), (2, 0). Alternatively, if you project this cylinder onto the xy-plane (as
in, view it from a camera placed far away on the z-axis), you see that rectangle.

3. Setting up the y bounds for this rectangle are easy: they go from 0 to 4 independently of x.

4. Likewise, the relevant interval in the x-axis is straightforward to identify: it’s just the interval from −2 to 2.

Altogether the integral is

∫
2

−2 ∫
4

0
∫

1
2

√
4−x2

− 1
2

√
4−x2

f (x , y, z)dz dy dx .

4.2 Going directly via algebra
Alternatively one can skip the geometric portion entirely: the original bounds already give us an algebraic descrip-
tion of the region of interest E, so we can just immediately apply the “algebraic” half of the procedure in §3. �is has
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the potential to be faster, but perhaps less enlightening. Ideally one should be comfortable with both (knowledge
of one approach helps understanding of the other).
Our region E is described by the inequalities

−1 < z < 1,
0 < y < 4,

−2
√
1 − z2 < x < 2

√
1 − z2.

�e desired new integration order is dz dy dx. We apply the procedure from §3:

1. �e inequalities involving z are:

−1 < z, z < 1, −2
√
1 − z2 < x , x < 2

√
1 − z2.

�e last two inequalities are the same as saying x2 < 4 − 4z2, or z2 < (4 − x2)/4, so we can isolate z as

−1 < z, z < 1, − 1
2
√
4 − x2 < z, z < 1

2
√
4 − x2.

Hence our z bounds are

− 1
2
√
4 − x2 =max(−1,− 1

2
√
4 − x2) < z <min(1, 1

2
√
4 − x2) = 1

2
√
4 − x2

because 1
2

√
4 − x2 ≤ 1.

2. To identify the relevant region in the xy-plane, we have the inequality

− 1
2
√
4 − x2 < 1

2
√
4 − x2

from the preceding part, together with the inequality 0 < y < 4 (this is the only original inequality not
involving z).
�e �rst inequality is just saying that

√
4 − x2 > 0, so it’s equivalent to requiring −2 < x < 2. Hence the

relevant region in the xy-plane is a rectangle:

−2 < x < 2,
0 < y < 4.

3. At this point it’s pretty clear what the x and y bounds are. But to be wholly systematic, we’ll continue with
the procedure even if it seems a little silly: to �nd the y bounds, we look at the inequalities involving y. �ese
are just

0 < y, y < 4.

Because y is already isolated in these, there is nothing to do, so the y bounds are 0 < y < 4 (though that was
clear already).

4. Finally we go to the x-axis. From the preceding part, we have the inequality 0 < 4, which is obviously always
true regardless of x. �en we also have the inequalities −2 < x < 2. So the relevant interval in the x axis is
from −2 to 2.

Hence the new integral is

∫
2

−2 ∫
4

0
∫

1
2

√
4−x2

− 1
2

√
4−x2

f (x , y, z)dz dy dx .
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Where to look in Stewart: §15.2 for double integrals; Exercises 15.2.45-56. §15.6 for triple integrals; Exercises
15.6.33-36.

5 Rewriting Multiple Integrals: Change of Variables
�emultivariate change of variables formula for double integrals states that if

⎧⎪⎪⎨⎪⎪⎩

x = g(u, v)
y = h(u, v)

is a (di�erentiable) one-to-one and onto map from a region S in the uv-plane to a region R in the xy-plane, then

∬
S

f (g(u, v), h(u, v)) ∣∂(x , y)
∂(u, v) ∣du dv =∬

R

f (x , y)dx dy.

Using the change of variables formula is not as involved as the preceding topics in this write-up—provided you can
remember everything that goes into the formula! So let’s break this down into easily digestible pieces.
In practice, you will be given the integral on the right and asked to produce the integral on the le�. �ere are

two essentially disjoint subproblems that need to be solved.

1. What happens to the integrand (the thing inside the integral)?�is is purely computational. First of all, we
need to rewrite the existing integrand f (x , y) in terms of u and v instead, but this just amounts to substitut-
ing the given expressions g(u, v) and h(u, v) in place of x and y. So that explains the f (g(u, v), h(u, v))
portion of the le� hand side’s integrand.
However, that alone is not enough, because our map from the uv-plane to the xy-plane could distort area
measurements. A corrective factor is needed: the absolute value of the Jacobian determinant. You should
think of this term as measuring the area distortion factor:

∣∂(x , y)
∂(u, v) ∣ = ∣det [∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v]∣

which is equal to ∣guhv − gvhu∣ if x = g(u, v) and y = h(u, v).
Don’t forget the absolute values! �ey’re not present in the single-variable change of variables formula, but
they are necessary in the multivariate setting.

2. What happens to the bounds? Although there is perhaps less computation in this part, this question is
usually conceptually more challenging. �e strategy is as follows:

(a) Write down an algebraic description of the region R in the xy-plane, using inequalities involving x and
y.

(b) �en substitute x = g(u, v) and y = h(u, v) into those inequalities. Now you have an algebraic descrip-
tion of some region in the uv-plane.

(c) Typically that region will su�ce as S. But there is something we need to make sure of: for every (x , y)
in R, does the system of equations

x = g(u, v), y = h(u, v)

have exactly one solution in the variables u and v? If the answer is “yes,” then we are �ne, and the region
identi�ed in (b) will su�ce as S (move on to the next step). But if not:
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• Is it because there are values of (x , y) in R for which there are multiple solutions for u and v? If
this is the case, we will need to make sure that S is small enough so that there is always only one
solution inside of S.

• Is it because there are values of (x , y) in R for which there are no solutions for u and v? If this is
the case... we are doomed. �e transformation cannot be used to rewrite the integral!

(d) Set up the u, v integral bounds for the region S, e.g. using the algorithm outlined in §3 (start at step 3
because this is a double integral, and of course replace “y” and “x” by the variables u, v).

3. Put the answers from the two subproblems together to get the desired u, v integral.

Example 1 (Polar integration). As an example, we can give a purely algebraic treatment of polar integration. �is is
primarily to highlight the various parts of the above algorithm—in practice, a geometric standpoint towards polar
integration is o�en preferable to the below, which is rather contrived by comparison.
�e point is that we have much weaker geometric intuition towards arbitary changes of variables. If you under-

stand precisely how it works for a transformation that we can visualize well, perhaps that will give you some faith
in how it works, and then you can use it to more comfortably study arbitrary transformations algebraically.
Let R denote the disk of radius 1 centered at (0, 1) in the xy-plane, and suppose we want to evaluate the integral

∬
R

y2 dx dy

by applying the transformation x = r cos θ , y = r sin θ (so r, θ play the roles of u, v in the above algorithm).

1. �e integrand becomes:

(original integrand with subsitution applied)(corrective factor)

= r2(sin θ)2 ∣det [cos θ −r sin θ
sin θ r cos θ ]∣ = r2(sin θ)2∣r∣.

2. To identify the corresponding region S in the rθ-plane:

(a) We write down an algebraic description of the original region R in the xy-plane:

x2 + (y − 1)2 < 1.

(b) �en we substitute to get

r2(cos θ)2 + r2(sin θ)2 − 2r sin θ + 1 < 1
r2 − 2r sin θ < 0

r2 < 2r sin θ .

(c) However, recall that any given point (x , y) has in�nitely many polar representations! �at is to say,
there are in�nitely many solutions to x = r cos θ, y = r sin θ for r and θ. We will need to make sure that
we pick a region in which this is not an issue. �e standard way of doing this is to require that r ≥ 0 and
that 0 ≤ θ < 2π. With these additional stipulations, polar representation becomes unique1.
As we are now assuming r > 0 (the origin isn’t in x2 + (y − 1)2 < 1, and even if it were, we could throw
it out because it’s only one point) we can divide by r and get r < 2 sin θ.

1... well, except for the origin, but that’s not an issue because it’s only one point.
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Math 53 Midterm 2: Review of Di�cult Topics Integration

(d) Our region is described by r < 2 sin θ, r > 0, 0 ≤ θ < 2π.
If we use the integration order dr dθ, then we see that the r bounds are 0 < r < 2 sin θ.
To get the θ bounds, we have the inequality 0 < 2 sin θ from the r bound, in addition to the original
inequality 0 ≤ θ < 2π. So the θ bounds are 0 < θ < π (see §3 for more discussion about this process).

3. Putting everything together, we get

∫
π

0
∫

2 sin θ

0
r2(sin θ)2∣r∣dr dθ .

But since r is always positive in our region of integration, we can drop the absolute values:

∫
π

0
∫

2 sin θ

0
r3(sin θ)2 dr dθ .

�e rest is just an integral computation.

Where to look in Stewart: §15.9. Exercises 15.9.23-27 may be good practice in particular. Note that you will want
to start by making a guess for what u and v should be in terms of x and y; to apply the change of variables formula
you will �rst need to solve that system of equations to get x and y in terms of u and v.
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